Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Magn Reson Imaging ; 108: 11-21, 2024 May.
Article in English | MEDLINE | ID: mdl-38309376

ABSTRACT

Diffusion MRI of the spinal cord (SC) is susceptible to geometric distortion caused by field inhomogeneities, and prone to misalignment across time series and signal dropout caused by biological motion. Several modifications of image acquisition and image processing techniques have been introduced to overcome these artifacts, but their specific benefits are largely unproven and warrant further investigations. We aim to evaluate two specific aspects of image acquisition and processing that address image quality in diffusion studies of the spinal cord: susceptibility corrections to reduce geometric distortions, and cardiac triggering to minimize motion artifacts. First, we evaluate 4 distortion preprocessing strategies on 7 datasets of the cervical and lumbar SC and find that while distortion correction techniques increase geometric similarity to structural images, they are largely driven by the high-contrast cerebrospinal fluid, and do not consistently improve the geometry within the cord nor improve white-to-gray matter contrast. We recommend at a minimum to perform bulk-motion correction in preprocessing and posit that improvements/adaptations are needed for spinal cord distortion preprocessing algorithms, which are currently optimized and designed for brain imaging. Second, we design experiments to evaluate the impact of removing cardiac triggering. We show that when triggering is foregone, images are qualitatively similar to triggered sequences, do not have increased prevalence of artifacts, and result in similar diffusion tensor indices with similar reproducibility to triggered acquisitions. When triggering is removed, much shorter acquisitions are possible, which are also qualitatively and quantitatively similar to triggered sequences. We suggest that removing cardiac triggering for cervical SC diffusion can be a reasonable option to save time with minimal sacrifice to image quality.


Subject(s)
Diffusion Magnetic Resonance Imaging , Image Processing, Computer-Assisted , Reproducibility of Results , Image Processing, Computer-Assisted/methods , Diffusion Magnetic Resonance Imaging/methods , Spinal Cord/diagnostic imaging , Brain , Algorithms , Artifacts , Echo-Planar Imaging/methods
2.
Neuroimage ; 284: 120460, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37979894

ABSTRACT

BACKGROUND: Susceptibility-weighted imaging (SWI) has been extensively studied in the brain and in diseases of the central nervous system such as multiple sclerosis (MS) providing unique opportunities to visualize cerebral vasculature and disease-related pathology, including the central vein sign (CVS) and paramagnetic rim lesions (PRLs). However, similar studies evaluating SWI in the spinal cord of patients with MS remain severely limited. PURPOSE: Based on our previous findings of enlarged spinal vessels in MS compared to healthy controls (HCs), we developed high-field SWI acquisition and processing methods for the cervical spinal cord with application in people with MS (pwMS) and HCs. Here, we demonstrate the vascular variability between the two cohorts and unique MS lesion features in the cervical cord. METHODS: In this retrospective, exploratory pilot study conducted between March 2021 and March 2022, we scanned 12 HCs and 9 pwMS using an optimized non-contrast 2D T2*-weighted gradient echo sequence at 7 tesla. The overall appearance of the white and gray matter as well as tissue vasculature were compared between the two cohorts and areas of MS pathology in the patient group were assessed using both the magnitude and processed SWI images. RESULTS: We show improved visibility of vessels and more pronounced gray and white matter contrast in the MS group compared to HCs, hypointensities surrounding the cord in the MS cohort, and identify signal changes indicative of the CVS and paramagnetic rims in 66 % of pwMS with cervical spinal lesions. CONCLUSION: In this first study of SWI at 7T in the human spinal cord, SWI holds promise in advancing our understanding of disease processes in the cervical cord in MS.


Subject(s)
Cervical Cord , Multiple Sclerosis , Humans , Cervical Cord/diagnostic imaging , Cervical Cord/pathology , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Retrospective Studies , Pilot Projects , Spinal Cord/diagnostic imaging , Spinal Cord/pathology , Magnetic Resonance Imaging/methods
3.
Neuroimage ; 266: 119826, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36543265

ABSTRACT

Quantitative diffusion MRI (dMRI) is a promising technique for evaluating the spinal cord in health and disease. However, low signal-to-noise ratio (SNR) can impede interpretation and quantification of these images. The purpose of this study is to evaluate several dMRI denoising approaches on their ability to improve the quality, reliability, and accuracy of quantitative diffusion MRI of the spinal cord. We evaluate three denoising approaches (Non-Local Means, Marchenko-Pastur PCA, and a newly proposed Patch2Self algorithm) and conduct five experiments to validate the denoising performance on clinical-quality and commonly-acquired dMRI acquisitions: 1) a phantom experiment to assess denoising error and bias; 2) a multi-vendor, multi-acquisition open experiment for both qualitative and quantitative evaluation of noise residuals; 3) a bootstrapping experiment to estimate uncertainty of parametric maps; 4) an assessment of spinal cord lesion conspicuity in a multiple sclerosis group; and 5) an evaluation of denoising for advanced parametric multi-compartment modeling. We find that all methods improve signal-to-noise ratio and conspicuity of MS lesions in individual diffusion weighted images (DWIs), but MPPCA and Patch2Self excel at improving the quality and intra-cord contrast of diffusion weighted images - removing signal fluctuations due to thermal noise while improving precision of estimation of diffusion parameters even with very few DWIs (i.e., 16-32) typical of clinical acquisitions. These denoising approaches hold promise for facilitating reliable diffusion observations and measurements in the spinal cord to investigate biological and pathological processes.


Subject(s)
Cervical Cord , Humans , Cervical Cord/diagnostic imaging , Reproducibility of Results , Diffusion Magnetic Resonance Imaging/methods , Spinal Cord/diagnostic imaging , Signal-To-Noise Ratio , Algorithms
4.
Neuroimage Clin ; 36: 103244, 2022.
Article in English | MEDLINE | ID: mdl-36306717

ABSTRACT

Spinal cord magnetic resonance imaging (MRI) has a central role in multiple sclerosis (MS) clinical practice for diagnosis and disease monitoring. Advanced MRI sequences capable of visualizing and quantifying tissue macro- and microstructure and reflecting different pathological disease processes have been used in MS research; however, the spinal cord remains under-explored, partly due to technical obstacles inherent to imaging this structure. We propose that the study of the spinal cord merits equal ambition in overcoming technical challenges, and that there is much information to be exploited to make valuable contributions to our understanding of MS. We present a narrative review on the latest progress in advanced spinal cord MRI in MS, covering in the first part structural, functional, metabolic and vascular imaging methods. We focus on recent studies of MS and those making significant technical steps, noting the challenges that remain to be addressed and what stands to be gained from such advances. Throughout we also refer to other works that presend more in-depth review on specific themes. In the second part, we present several topics that, in our view, hold particular potential. The need for better imaging of gray matter is discussed. We stress the importance of developing imaging beyond the cervical spinal cord, and explore the use of ultra-high field MRI. Finally, some recommendations are given for future research, from study design to newer developments in analysis, and the need for harmonization of sequences and methods within the field. This review is aimed at researchers and clinicians with an interest in gaining an overview of the current state of advanced MRI research in this field and what is primed to be the future of spinal cord imaging in MS research.


Subject(s)
Cervical Cord , Multiple Sclerosis , Humans , Multiple Sclerosis/pathology , Tomography, X-Ray Computed , Spinal Cord/diagnostic imaging , Spinal Cord/pathology , Magnetic Resonance Imaging/methods , Cervical Cord/pathology
5.
Neuroimage Clin ; 36: 103163, 2022.
Article in English | MEDLINE | ID: mdl-36037661

ABSTRACT

Tuberous sclerosis complex is a rare genetic multisystem condition that is associated with a high prevalence of neurodevelopmental disorders such as autism and attention-deficit/hyperactivity disorder. The underlying neural mechanisms of the emergence of these symptom domains in tuberous sclerosis complex remain unclear. Here, we use fixel-based analysis of diffusion-weighted imaging, which allows for the differentiation between multiple fibre populations within a voxel, to compare white matter properties in 16 participants with tuberous sclerosis complex (aged 11-19) and 12 age and sex matched control participants. We further tested associations between white matter alterations and autism and inattention symptoms as well as cognitive ability in participants with tuberous sclerosis complex. Compared to controls, participants with tuberous sclerosis complex showed reduced fibre density cross-section (FDC) in the dorsal branch of right superior longitudinal fasciculus and bilateral inferior longitudinal fasciculus, reduced fibre density (FD) in bilateral tapetum, and reduced fibre cross-section (FC) in the ventral branch of right superior longitudinal fasciculus. In participants with tuberous sclerosis complex, the extent of FDC reductions in right superior longitudinal fasciculus was significantly associated with autism traits (social communication difficulties and restricted, repetitive behaviours), whereas FDC reductions in right inferior longitudinal fasciculus were associated with inattention. The observed white matter alterations were unrelated to cognitive ability. Our findings shed light on the fibre-specific biophysical properties of white matter alterations in tuberous sclerosis complex and suggest that these regional changes are selectively associated with the severity of neurodevelopmental symptoms.


Subject(s)
Autism Spectrum Disorder , Leukoaraiosis , Tuberous Sclerosis , White Matter , Humans , White Matter/diagnostic imaging , Tuberous Sclerosis/complications , Tuberous Sclerosis/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/complications , Cognition
6.
Neuroimage Clin ; 35: 103127, 2022.
Article in English | MEDLINE | ID: mdl-35917721

ABSTRACT

Focal lesions may affect functional connectivity (FC) of the ventral and dorsal networks in the cervical spinal cord of people with relapsing-remitting multiple sclerosis (RRMS). Resting-state FC can be measured using functional MRI (fMRI) at 3T. This study sought to determine whether alterations in FC may be related to the degree of damage in the normal-appearing tissue. Tissue integrity and FC in the cervical spinal cord were assessed with diffusion tensor imaging (DTI) and resting-state fMRI, respectively, in a group of 26 RRMS participants with high cervical lesion load, low disability, and minimally impaired sensorimotor function, and healthy controls. Lower fractional anisotropy (FA) and higher radial diffusivity (RD) were observed in the normal-appearing white matter in the RRMS group relative to controls. Average FC in ventral and dorsal networks was similar between groups. Significant associations were found between higher FC in the dorsal sensory network and several DTI markers of pathology in the normal-appearing tissue. In the normal-appearing grey matter, dorsal FC was positively correlated with axial diffusivity (AD) (r = 0.46, p = 0.020) and mean diffusivity (MD) (r = 0.43, p = 0.032). In the normal-appearing white matter, dorsal FC was negatively correlated with FA (r = -0.43, p = 0.028) and positively correlated with RD (r = 0.49, p = 0.012), AD (r = 0.42, p = 0.037) and MD (r = 0.53, p = 0.006). These results suggest that increased connectivity, while remaining within the normal range, may represent a compensatory mechanism in response to structural damage in support of preserved sensory function in RRMS.


Subject(s)
Cervical Cord , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Brain , Cervical Cord/pathology , Diffusion Tensor Imaging/methods , Humans , Multiple Sclerosis/pathology , Multiple Sclerosis, Relapsing-Remitting/pathology , Spinal Cord/pathology
7.
Magn Reson Imaging ; 94: 25-35, 2022 12.
Article in English | MEDLINE | ID: mdl-35931321

ABSTRACT

Several recent multi-compartment diffusion MRI investigations and modeling strategies have utilized the orientationally-averaged, or spherical mean, diffusion-weighted signal to study tissue microstructure of the central nervous system. Most experimental designs sample a large number of diffusion weighted directions in order to calculate the spherical mean signal, however, sampling a subset of these directions may increase scanning efficiency and enable either a decrease in scan time or the ability to sample more diffusion weightings. Here, we aim to determine the minimum number of gradient directions needed for a robust measurement of the spherical mean signal. We used computer simulations to characterize the variation of the measured spherical mean signal as a function of the number of gradient directions, while also investigating the effects of diffusion weighting (b-value), signal-to-noise ratio (SNR), available hardware, and spherical mean fitting strategy. We then utilize empirically acquired data in the brain and spinal cord to validate simulations, showing experimental results are in good agreement with simulations. We summarize these results by providing an intuitive lookup table to facilitate the determination of the minimal number of sampling directions needed for robust spherical mean measurements, and give recommendations based on SNR and experimental conditions.


Subject(s)
Brain , Diffusion Magnetic Resonance Imaging , Signal-To-Noise Ratio , Diffusion Magnetic Resonance Imaging/methods , Diffusion , Brain/diagnostic imaging , Computer Simulation
8.
Front Neurol ; 13: 764690, 2022.
Article in English | MEDLINE | ID: mdl-35299614

ABSTRACT

Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) can probe tissue biochemistry in vivo with high resolution and sensitivity without requiring exogenous contrast agents. Applying CEST MRI at ultrahigh field provides advantages of increasing spectral resolution and improving sensitivity to metabolites with faster proton exchange rates such as glutamate, a critical neurotransmitter in the brain. Prior magnetic resonance spectroscopy and CEST MRI studies have revealed altered regulation of glutamate in patients with multiple sclerosis (MS). While CEST imaging facilitates new strategies for investigating the pathology underlying this complex and heterogeneous neurological disease, CEST signals are contaminated or diluted by concurrent effects (e.g., semi-solid magnetization transfer (MT) and direct water saturation) and are scaled by the T1 relaxation time of the free water pool which may also be altered in the context of disease. In this study of 20 relapsing-remitting MS patients and age- and sex-matched healthy volunteers, glutamate-weighted CEST data were acquired at 7.0 T. A Lorentzian fitting procedure was used to remove the asymmetric MT contribution from CEST z-spectra, and the apparent exchange-dependent relaxation (AREX) correction was applied using an R1 map derived from an inversion recovery sequence to further isolate glutamate-weighted CEST signals from concurrent effects. Associations between AREX and cognitive function were examined using the Minimal Assessment of Cognitive Function in MS battery. After isolating CEST effects from MT, direct water saturation, and T1 effects, glutamate-weighted AREX contrast remained higher in gray matter than in white matter, though the difference between these tissues decreased. Glutamate-weighted AREX in normal-appearing gray and white matter in MS patients did not differ from healthy gray and white matter but was significantly elevated in white matter lesions. AREX in some cortical regions and in white matter lesions correlated with disability and measures of cognitive function in MS patients. However, further studies with larger sample sizes are needed to confirm these relationships due to potential confounding effects. The application of MT and AREX corrections in this study demonstrates the importance of isolating CEST signals for more specific characterization of the contribution of metabolic changes to tissue pathology and symptoms in MS.

11.
Sci Data ; 8(1): 219, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34400655

ABSTRACT

In a companion paper by Cohen-Adad et al. we introduce the spine generic quantitative MRI protocol that provides valuable metrics for assessing spinal cord macrostructural and microstructural integrity. This protocol was used to acquire a single subject dataset across 19 centers and a multi-subject dataset across 42 centers (for a total of 260 participants), spanning the three main MRI manufacturers: GE, Philips and Siemens. Both datasets are publicly available via git-annex. Data were analysed using the Spinal Cord Toolbox to produce normative values as well as inter/intra-site and inter/intra-manufacturer statistics. Reproducibility for the spine generic protocol was high across sites and manufacturers, with an average inter-site coefficient of variation of less than 5% for all the metrics. Full documentation and results can be found at https://spine-generic.rtfd.io/ . The datasets and analysis pipeline will help pave the way towards accessible and reproducible quantitative MRI in the spinal cord.


Subject(s)
Magnetic Resonance Imaging , Neuroimaging , Spinal Cord/diagnostic imaging , Spinal Cord/ultrastructure , Adult , Female , Humans , Image Processing, Computer-Assisted , Male , Reproducibility of Results
12.
Nat Protoc ; 16(10): 4611-4632, 2021 10.
Article in English | MEDLINE | ID: mdl-34400839

ABSTRACT

Quantitative spinal cord (SC) magnetic resonance imaging (MRI) presents many challenges, including a lack of standardized imaging protocols. Here we present a prospectively harmonized quantitative MRI protocol, which we refer to as the spine generic protocol, for users of 3T MRI systems from the three main manufacturers: GE, Philips and Siemens. The protocol provides guidance for assessing SC macrostructural and microstructural integrity: T1-weighted and T2-weighted imaging for SC cross-sectional area computation, multi-echo gradient echo for gray matter cross-sectional area, and magnetization transfer and diffusion weighted imaging for assessing white matter microstructure. In a companion paper from the same authors, the spine generic protocol was used to acquire data across 42 centers in 260 healthy subjects. The key details of the spine generic protocol are also available in an open-access document that can be found at https://github.com/spine-generic/protocols . The protocol will serve as a starting point for researchers and clinicians implementing new SC imaging initiatives so that, in the future, inclusion of the SC in neuroimaging protocols will be more common. The protocol could be implemented by any trained MR technician or by a researcher/clinician familiar with MRI acquisition.


Subject(s)
Magnetic Resonance Imaging , Neuroimaging , Spinal Cord , Adult , Humans , Image Processing, Computer-Assisted , Male
13.
J Neuroimaging ; 31(6): 1119-1125, 2021 11.
Article in English | MEDLINE | ID: mdl-34310789

ABSTRACT

BACKGROUND AND PURPOSE: Myelin water fraction (MWF) is a histopathologically validated in vivo myelin marker. As MWF is the proportion of water with a short T2 relative to the total water, increases in water from edema and inflammation may confound MWF determination in multiple sclerosis (MS) lesions. Total water content (TWC) measurement enables calculation of absolute myelin water content (MWC) and can be used to distinguish edema/inflammation from demyelination. We assessed what influence changes in total water might have on MWF by calculating MWC values in new MS lesions. METHODS: 3T 32-echo T2 relaxation data were collected monthly for 6 months from six relapsing-remitting MS participants. TWC was determined and multiplied with MWF images to calculate corrected MWC images. The effect of this water content correction was examined in 20 new lesions by comparing mean MWF and MWC over time. RESULTS: On average, at lesion first appearance, lesion TWC increased by 6.4% (p = .003; range: -1% to +21%), MWF decreased by 24% (p = .006; range: -70% to +12%), and MWC decreased by 20% (p = .026; range: -68% to +21%), relative to prelesion values. Average TWC in lesions then gradually decreased, whereas MWF and MWC remained low. The shape of the MWF and MWC lesion evolution curves was nearly identical, differing only by an offset. CONCLUSION: MWF mirrors MWC and is able to monitor myelin in new lesions. Even after taking into account water content increases, MWC still decreased at lesion first appearance attributed to demyelination.


Subject(s)
Multiple Sclerosis , Myelin Sheath , Brain/pathology , Humans , Magnetic Resonance Imaging/methods , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Myelin Sheath/pathology , Water
15.
Neuroimage Clin ; 16: 17-22, 2017.
Article in English | MEDLINE | ID: mdl-28725551

ABSTRACT

Spinal cord pathology is a feature of both neuromyelitis optica spectrum disorder (NMOSD) and relapsing-remitting multiple sclerosis (MS). While subclinical disease activity has been described in MS using quantitative magnetic resonance imaging measures, current evidence suggests that neurodegeneration is absent between relapses in NMOSD, although most evidence comes from brain studies. We aimed to assess cross-sectional differences and longitudinal changes in myelin integrity in relapse-free MS and NMOSD subjects over one year. 15 NMOSD, 15 MS subjects, and 17 healthy controls were scanned at 3 T using a cervical cord mcDESPOT protocol. A subset of 8 NMOSD, 11 MS subjects and 14 controls completed follow-up. Measures of the myelin water fraction (fM) within lesioned and non-lesioned cord segments were collected. At baseline, fM in lesioned and non-lesioned segments was significantly reduced in MS (lesioned: p = 0.002; non-lesioned: p = 0.03) and NMOSD (lesioned: p = 0.0007; non-lesioned: p = 0.002) compared to controls. Longitudinally, fM decreased within non-lesioned cord segments in the MS group (- 7.3%, p = 0.02), but not in NMOSD (+ 5.8%, p = 0.1), while change in lesioned segments fM did not differ from controls' in either patient group. These results suggest that degenerative changes outside of lesioned areas can be observed over a short time frame in MS, but not NMOSD, and support the use of longitudinal myelin water imaging for the assessment of pathological changes in the cervical cord in demyelinating diseases.


Subject(s)
Cervical Cord/pathology , Multiple Sclerosis/complications , Myelin Sheath/metabolism , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/pathology , Water , Adult , Aged , Case-Control Studies , Cervical Cord/diagnostic imaging , Cross-Sectional Studies , Female , Follow-Up Studies , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Multiple Sclerosis/diagnostic imaging , Neuromyelitis Optica/complications , Neuromyelitis Optica/diagnostic imaging , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...